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Abstract

A dynamical calculation scheme that employs Cartesian
coordinates with a z axis normal to the crystal surface to
de®ne polarization unit vectors and wave®elds is applied
to interpret the intensity distribution of crystal trunca-
tion rods for surfaces and interfaces. A comparison
between this calculation scheme and the asymptotic
iteration approach using the conventional presentation
of the polarization components of the wave®elds, with
the � and � components perpendicular to the wave-
vectors, is presented. It is found that the use of Cartesian
coordinate systems can provide correct boundary
conditions in determining the wave®eld amplitudes,
thus leading to a rigorous and general calculation
scheme for dynamical diffraction from surfaces and
interfaces.

1. Introduction

X-ray diffraction from surfaces, interfaces, thin ®lms,
multilayers and single-crystal bulk can be considered as
general N-beam diffraction, with the integer N � 0,
depending on how many reciprocal-lattice points are
involved and which scan route in the reciprocal space is
adopted when performing the diffraction experiment. In
general, a universal theory or calculation scheme for
N-beam multiple diffraction should be able to describe
all the possible diffraction situations, involving either
glancing-angle or wide-angle incidence or scattering.
In the literature, dynamical theories and calculation
algorithms for conventional wide-angle multiple
diffraction, including two-beam Bragg diffraction, have
been well developed (Ewald, 1937; Saccocio & Zajac,
1965a,b; Hildebrandt, 1966; Joko & Fukuhara, 1967;
Ewald & Heno, 1968; Heno & Ewald, 1968; Penning &
Polder, 1968; Colella, 1974; Pinsker, 1978; Juretschke,
1982; Chang, 1984; Authier et al., 1996; Hung & Chang,
1989; Stepanov & Ulyanenkov, 1994). However, when
a grazing angle is involved either for X-ray incidence
or for scattering, the existing calculation methods
(Afanas'ev & Melkonyan, 1983; Colella, 1991), though
useful in some particular cases, may not be applicable to
cases involving surface-normal scans (the so-called
crystal truncation rods) and surface in-plane radial scans

(Andrews & Cowley, 1986; Robinson, 1986; Feiden-
hans'l, 1989; Robinson & Tweet, 1992). Although the
dynamical approach using Darwin's difference equation
(Caticha, 1993, 1994; Nakatani & Takahashi, 1994)
successfully describes surface-normal scans of special
geometry, the generality of this approach is still limited
to some special cases. Recently, an iterative technique
using the minimization of the variation of the dispersion
equation with respect to the eigenvalues has provided
the exact values for the eigenvalues (Gau & Chang,
1995). However, the drawback of this calculation tech-
nique is that it is very time consuming in ®nding the
correct eigenvalues. More recently, Stetsko & Chang
(1997) have analysed the dif®culties in dynamical
calculations involving simultaneously grazing-angle and
wide-angle diffraction. It has been found that under such
a circumstance the off-diagonal elements of the scat-
tering matrix are the variables of polarization, which
make the dispersion equation a nonlinear equation of
high-order polynomial. Thus, to ®nd directly the solu-
tions for eigenvalues is very dif®cult. If, however, a
Cartesian coordinate system is chosen for the polariza-
tion unit vectors of the diffracted beams with one of the
axes, say the z axis, perpendicular to the crystal surface,
then the polarization-dependent variables in the off-
diagonal elements can be absorbed in the eigenvectors.
Thus, the dispersion equation becomes a normal eigen-
value equation, which can be solved with ease. Although
it has been demonstrated that this algorithm using the
Cartesian coordinates is able to handle multibeam
grazing-incidence diffraction, con®rmation is awaited of
its effectiveness in calculating the intensity distributions
of crystal truncation rods. It is the purpose of this paper
to apply this Cartesian transformation technique to a
surface rod and to compare the calculated results with
those obtained by the iterative procedure. In the
following, the algorithm using the Cartesian coordinate
system will be brie¯y outlined for later discussion.

2. Theoretical considerations

There are two types of crystal truncation rods (or
surface-normal rods) in the reciprocal space of a surface/
interface: nonspecular rods with and specular rods
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without the in-plane components of momentum transfer
with respect to the incident wavevector. A specular rod
scan is equivalent to the normal �ÿ2� scan, which can be
handled by the conventional dynamical theory, while
nonspecular rods are those that cause dif®culties in
dynamical calculation. Fig. 1 is a schematic diagram of
grazing-incidence X-ray diffraction (GXID). n is the
crystal surface normal toward the interior of the crystal,
which assigns the positions of the origins of the wave-
vectors, the tie points, inside and outside the crystal. kOi

and kOs are the incident and specularly re¯ected wave-
vectors, respectively, while kG and kL are the diffracted
wavevectors at the entrance surface of the crystal. The
reciprocal-lattice points O, G and L are, respectively, the
origin and the two end points of the nonspecular rod
GL. The reciprocal-lattice vector OG of the G re¯ection
is parallel to the crystal surface. Since the reciprocal-
lattice vector GL is parallel to the surface normal n, the
wavevectors kG and kL are identical. Points COi, COs, CG

and CL are the origins of the wavevectors kOi, kOs, kG

and kL, respectively. Point A lies on n such that the plane
of triangle AGO is parallel to the crystal surface. AO
and AG are the in-plane components of kOi (and also
kOs) and kG (and also kL), and the angle between AO
and AG is �. �i and �f are the incident and the scattered
angles of kOi and kG (and also kL) with respect to the
surface. Points C0� j� are the origins of the wavevectors
KO( j), KG( j) and KL( j) (not shown in Fig. 1) inside the
crystal. The z axis is along n. The x axis is along the OG
direction and the y axis is perpendicular to the x and z
axes. For the rod scan, the crystal is oriented so that �i

and �f vary. There are two ways of executing the rod

scan: (i) varying �f as �i is ®xed, and (ii) varying �i and �f

such that �i � �f (Feidenhans'l, 1989; Robinson &
Tweet, 1992).

The intensity distribution of the nonspecular rod
along GL for the two different types of scan can be
calculated using the procedure given below.

According to Laue's treatment (von Laue, 1931), the
fundamental equations of the wave®eld in terms of the
electric E ®elds take the form

2"MEM ÿ
�KM � EM�

k2
KM �

X
M0
�MÿM0EM0 �1�

for M and M0 � O, G and L, where

2"M � �K2
M ÿ k2�=k2 �2�

and �M � ÿ�e2�2=mc2�V�FM . EM is the electric ®eld of
the M-re¯ected wave. m and e are the mass and charge
of the electron, V is the volume of the crystal unit cell,
and FM is the structure factor of the re¯ection M. KM is
the wavevector of the re¯ection M inside the crystal and
k � 1=�. Instead of adopting the conventional polari-
zation unit vectors r and p, i.e. r and p forming a
mutually orthogonal system with the corresponding
wavevectors K, we de®ne the wave®eld EM in a Carte-
sian coordinate system as

EM � EMxx� EMyy� EMzz; �3�

where x, y and z are the unit vectors along the x, y and z
axes, respectively (Fig. 1). The components EM�rM and
EM�pM of EM in the conventional (r, p) coordinate
system (see Gau & Chang, 1995) are shown in Fig. 2(a)
[the unit vectors pM are parallel to the OGC0 plane and
rM � �pM � KM�=jpM � KMj], while the components
EMxx, EMyy and EMzz in the Cartesian coordinate system
are shown in Fig. 2(b). Referring to Figs. 1 and 2(b),
assume that the coordinates of the tie points C0 are xn, yn

and z, where (xn, yn) de®nes the position of the surface
normal n in the surface plane and z is a variable varying
with the different modes of wave propagation, namely,
z � zj for mode j. The corresponding wavevector KM is
then expressed as

KM �KMxx� KMyy� KMzz

� �XM ÿ xn�x� �YM ÿ yn�y� �ZM ÿ z�z
� xMx� yMy� �ZM ÿ z�z;

where (XM, YM, ZM) is the position of the reciprocal-
lattice point M.

By adopting the Cartesian coordinates for KM and
EM, the fundamental equation (1) can be written as

Fig. 1. Geometrical relation between the wavevectors and crystal
surface in a surface-normal scan.
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�E �
�Cÿ zI�2 � B2 ÿG2 ÿAB ÿA�Cÿ zI�

ÿAB �Cÿ zI�2 �A2 ÿG2 ÿB�Cÿ zI�
ÿA�Cÿ zI� ÿB�Cÿ zI� A2 � B2 ÿG2

0B@
1CA

�
Ex

Ey

Ez

0B@
1CA � 0: �4�

For three-beam diffraction, all the matrices are 3� 3
and I is a unit matrix. A, B and C are diagonal matrices
with the diagonal elements amm � xM, bmm � yM and
cmm � ZM , respectively. The matrix G is de®ned as
G2 � k2�I� F�, where the elements of F are given by
fmm0 � �MÿM0 . The vector columns of the unknown
components of the electric ®elds are
Ex � �EOx;EGx;ELx�T , Ey � �EOy;EGy;ELy�T and
Ez � �EOz;EGz;ELz�T , where the superscript T means
transpose. Clearly, the matrices A, B and C are
commutative.

The unknown z can be determined from the equation
of dispersion, det � � 0, where det � is a twelfth-order
polynomial.

Following the procedure given by Stetsko & Chang
(1997), (4) can be reduced to an eigenvalue problem as

�Qÿ zI4�E4 � 0; �5a�
Ez � ÿGÿ2�AEv � BEw�; �5b�

where

Q �
C 0 AGÿ2Aÿ I AGÿ2B

0 C BGÿ2A BGÿ2Bÿ I

B2 ÿG2 ÿAB C 0

ÿAB A2 ÿG2 0 C

0BB@
1CCA
�6�

and

E4 � ��Ex�T; �Ey�T; �Ev�T; �Ew�T �T;
Ev � �Cÿ zI�Ex ÿAEz;

Ew � �Cÿ zI�Ey ÿ BEz:

0 is a zero matrix.

3. Boundary conditions for a three-beam (O, G, L) case

Equation (4) provides the amplitude ratios among the
wave®elds E for each tie point, i.e. for each z. The
absolute amplitudes can be determined from the
following boundary conditions.

(i) Continuity of the x and y components of the E
®elds at the boundary:

eOix � eOsx �
P

j

cjEOx� j�;

eGx �
P

j

cjEGx� j�; �7�

eLx �
P

j

cjELx� j�;

and

eOiy � eOsy �
P

j

cjEOy� j�;

eGy �
P

j

cjEGy� j�; �8�

eLy �
P

j

cjELy� j�;

respectively, where e and E are the wave®eld amplitudes
outside and inside the crystal, eOix, eOiy and eOiz [used in
equations (9)±(11)] are the x, y and z components of the
inc2ident wave, which are assumed to be unity in the
calculation, eOsx, eOsy and eOsz [used in equations (9)±
(11)] are the x, y and z components of the specularly
re¯ected wave of the O re¯ection, and cj is the excitation
of mode j ( j � 1; . . . ; 12).

Fig. 2. The components of the E ®elds (a) in the (r, p) coordinate
system and (b) in the Cartesian coordinate system.
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(ii) Continuity of the z components of the electric
displacement D ®elds:

eOiz � eOsz �
P

j

cjDOz� j�

� P
j

cj�EOz� j� � �OEOz� j�

� �OÿGEGz� j� � �OÿLELz� j��;
eGz �

P
j

cjDGz� j�

� P
j

cj�EGz� j� � �GÿOEOz� j� �9�

� �OEGz� j� � �GÿLELz� j��;
eLz �

P
j

cjDLz� j�

� P
j

cj�ELz� j� � �LÿOEOz� j�

� �LÿGEGz� j� � �OELz� j��:

(iii) Continuity of the x and y components of the
magnetic induction H:

hOix � hOsx �
P

j

cjHOx� j�;

hGx �
P

j

cjHGx� j�;

hLx �
P

j

cjHLx� j�;

and

hOiy � hOsy �
P

j

cjHOy� j�;

hGy �
P

j

cjHGy� j�;

hLy �
P

j

cjHLy� j�;

respectively. Taking into account the relation
HM � �KM � EM�=KM , the conditions can be expressed
in terms of e and E as

ÿ eOizyn=kÿ eOiy sin �i ÿ eOszyn=k� eOsy sin �i

�P
j

cj�KOy� j�EOz� j� ÿ KOz� j�EOy� j��=KO� j�;

ÿ eGzyn=k� eGy sin �f

�P
j

cj�KGy� j�EGz� j� ÿ KGz� j�EGy� j��=KG� j�;

ÿ eLzyn=k� eLy sin �f

�P
j

cj�KLy� j�ELz� j� ÿ KLz� j�ELy� j��=KL� j�;

�10�

and

eOix sin �i � eOizxn=kÿ eOsx sin �i � eOszxn=k

�P
j

cj�KOz� j�EOx� j� ÿ KOx� j�EOz� j��=KO� j�;

ÿ eGx sin �f ÿ eGz�gÿ xn�=k

�P
j

cj�KGz� j�EGx� j� ÿ KGx� j�EGz� j��=KG� j�;

ÿ eLx sin �f ÿ eLz�gÿ xn�=k

�P
j

cj�KLz� j�ELx� j� ÿ KLx� j�ELz� j��=KL� j�;

�11�

respectively, where g � jOGj. The coordinates of the
points shown in Fig. 1 are O(0, 0, 0), G(g, 0, 0),
L(g, 0, ÿl), A(xn, yn, 0), where l � jGLj. For xn, yn, �i

and �f , the conditions x2
n � y2

n � k2 cos2 �i and
�gÿ xn�2 � y2

n � k2 cos2 �f hold, while for the known
components eOix, eOiy and eOiz of the incident wave
amplitude, the condition

eOixxn=k� eOiyyn=kÿ eOiz sin �i � 0

is satis®ed. It should be noted that the angle of scat-
tering, �f , can be determined as part of the self-consis-
tent solution of the boundary conditions. However, for
comparison with the experimental results, this approach
is not effective. The more ef®cient method is to use the
angles of incidence and scattering as the input and then
®nd the appropriate eigenvalues, eigenvectors and the
amplitudes through the requirements of energy and
momentum conservation, as suggested here. Thereby,
the calculated intensities at a given �f can be compared
directly with the measured ones.

(iv) Continuity of the z components of the magnetic B
®elds: since the magnetic permeability � is approxi-
mately equal to unity for X-rays, B � H. It can be easily
seen that for X-rays the condition of continuity of the z
components of the magnetic B ®elds follows from the
condition of continuity of the x and y components of the
E ®elds.

Fig. 3. Calculated intensity distributions of W(200) rod scan at
�i � 0:7� for � � 1:54056 AÊ (the solid curve was calculated using
the Cartesian coordinate system and the curve with open circles was
calculated using the asymptotic approach).
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In (7)±(11), there are 15 equations for 15 unknowns,
i.e. eOsx, eOsy, eOsz, eGx, eGy, eGz, eLx, eLy, eLz and cj for six
(i.e. j � 1; . . . ; 6) out of the total of twelve modes for a
semi-in®nite crystal.

As was noted in the explanation of Fig. 1, the
diffracted wavevectors kG and kL are equal. Conse-
quently, these two waves are coherent. Therefore, the
intensity of the rod for given �i and �f can be calculated
as

I��i; �f � � �jeGx � eLxj2 � jeGy � eLyj2
� jeGz � eLzj2� sin �f

� ��jeOixj2 � jeOiyj2 � jeOizj2� sin �i�ÿ1: �12�

4. Numerical calculations

The case under investigation here is the nonspecular rod
of tungsten, (200) ! (202), of Cu K�1, which involves
three reciprocal-lattice points, (000), (200) and (202).
The surface normal is along [001] and the direction [100]
is parallel to the crystal surface. The structure factors
used in the calculations are F�000� � 135:904� i11:154,
F�200� � ÿ96:868ÿ i11:154 and F�202� � 80:948 �
i11:154 electrons. Fig. 3 shows the diffracted intensities
for this case versus varying �f , with �i ®xed at 0.7�,
calculated using both the (r, p) coordinate system (the
open circles) (Gau & Chang, 1995) and the Cartesian
coordinate system (the solid line).

In general, the two calculated curves are very
much alike, except for the regions of weak intensities.
Since the curve of open circles is calculated by using
the asymptotic approach to ®nd the approximately
correct eigenvalues, the calculated intensities are not
as exact as those of the solid curve, which is obtained
without approximation. The perfect match in intensity
at the (200) and (202) diffraction positions is due to

the fact that at the grazing incidence the diffractions
at �f � 0 and 76� are nearly of pure two-beam
nature. The longitudinal components of E and H with
respect to the wavevectors are negligibly small in the
vicinity of the 200 and 202 re¯ections. However, this is
not the case when �f is between 0 and 76�, because the
diffraction is now of three-beam nature, involving the
coupling interaction between 202 and 200, i.e.
202ÿ 200 � 002. Moreover, the contribution of the
longitudinal components of E and H to the scattered
intensities becomes appreciable. This re¯ects that the
calculated intensity using the continuous tangential
components of E and H in the asymptotic approach is
slightly different from that calculated with the Cartesian
coordinate system.

Fig. 4 shows the intensity distributions of the same
nonspecular rod when both �i and �f are varying and
�i � �f for each position. The curve with open circles is
calculated using the asymptotic approach (Gau &
Chang, 1995) where the boundary conditions involve
only the continuous tangential components of E and H
at the boundary. The solid curve is calculated using the
Cartesian coordinate system. The difference between
the two curves occurring at large �i � �f angles is again
due to the different boundary conditions used. The
additional curve in Fig. 5 (with squares) was calculated
using the components of H in the asymptotic approach
and indicates a large deviation in intensity for lower
angles and a fair match for higher angles. The
discrepancy originates from the de®nition of the
polarization unit vectors r and p of the wave®elds E
adopted in the asymptotic approach, where EM�rM,
EM�pM and KM are mutually orthogonal. This de®nition
is, however, incorrect, because EM is not necessarily
perpendicular to KM. This discrepancy is eliminated by
the use of the Cartesian coordinate system.

Fig. 4. Calculated intensity distributions of W(200) rod scan with
varying �i and �f (�i � �f ) for � � 1:54056 AÊ (the solid curve was
calculated using the Cartesian coordinate system and the curve with
open circles was calculated using the asymptotic approach).

Fig. 5. Calculated intensity distributions of W(200) rod scan with
varying �i and �f (�i � �f ) for � � 1:54056 AÊ (the solid curve was
calculated using the Cartesian coordinate system, the curve with
open circles was calculated using the asymptotic approach with
continuous Ek and Hk, and the curve with squares was calculated
using the asymptotic approach with continuous Ek and D?).
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5. Conclusions

The calculation using the Cartesian coordinates is
straightforward in ®nding correct eigenvalues and
eigenvectors without employing any numerical iteration.
On the other hand, the current approach using appro-
priate boundary conditions leads to a correct and easy
way of calculating scattered intensities in surface/inter-
face-related rod scans, provided that the structure of a
surface/interface is known. If the atomic positions in the
crystal unit cell of the surface/interface, or the moduli
and phases of the structure factors are used as variables
to calculate the best ®t of the truncation rods to the
measured ones, then this calculation scheme could, in
principle, provide structural information on the surface/
interface. An attempt has been made recently to analyse
the interface structure of an overlayer system using the
conventional dynamical theory (Gau et al., 1997).
However, many practical issues are yet to be clari®ed.
Nevertheless, the calculation scheme presented here
serves as a ®rst step towards structure analysis of
surfaces/interfaces using the dynamical theory.
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Council for ®nancial support. HCC, TSG and YPS are
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